Restricted Conceptual Clustering Algorithms based on Seeds

نویسنده

  • Irene Olaya Ayaquica-Martínez
چکیده

El estudio de la clasificación no supervisada ha sido enfocado principalmente a desarrollar métodos que determinen agrupamientos tales que objetos en el mismo agrupamiento sean similares entre ellos, mientras que objetos de diferentes agrupamientos sean poco similares. Sin embargo, para algunos problemas prácticos se requiere, además de determinar los agrupamientos, conocer las propiedades que describan cómo son dichos agrupamientos. A este problema se le conoce como agrupamiento conceptual. Existen diversos algoritmos que permiten resolver el problema de agrupamiento conceptual, entre los que se encuentra el algoritmo k-means conceptual, el cual es una versión conceptual del algoritmo k-means; uno de los algoritmos más estudiados y utilizados para resolver el problema de clasificación no supervisada restringida (cuando se especifica a priori el número de agrupamientos). La principal característica del algoritmo k-means conceptual es que requiere retículos de generalización para la construcción de los conceptos. En esta tesis se proponen dos algoritmos k-means conceptuales, el primero de ellos es una mejora del algoritmo k-means conceptual y el segundo es un algoritmo k-means conceptual que no requiere retículos de generalización para la construcción de los conceptos. Finalmente, en esta tesis se proponen dos algoritmos conceptuales difusos, los cuales son versiones difusas de los algoritmos conceptuales duros propuestos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

An improved opposition-based Crow Search Algorithm for Data Clustering

Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...

متن کامل

Generating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms

UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computación y Sistemas

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2007